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Long-wavelength instabilities of three-dimensional patterns
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Long-wavelength instabilities of steady patterns, spatially periodic in three dimensions, are studied. All
potentially stable patterns with the symmetries of the simple-, face-centered- and body-centered-cubic lattices
are considered. The results generalize the well-known Eckhaus, zigzag, and skew-varicose instabilities to
three-dimensional patterns and are applied to two-species reaction-diffusion equations modeling the Turing
instability.
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I. INTRODUCTION

Formation of structure via spontaneous symmet
breaking bifurcations is a topic of much current interest@1#.
Despite this, little work has been done on pattern format
in three dimensions, i.e., in systems that are translation
variant in three dimensions. The recent experimental disc
ery of the Turing instability@2,3# provides one motivation for
extending the existing theory for two-dimensional patterns
three dimensions. The Turing instability arises in reactio
diffusion systems and the characteristic wavelength of
pattern that is produced isintrinsic, i.e., it depends only upon
the reaction rates, concentrations, and diffusivities of
chemicals involved, and not upon any externally impos
length scale. Thus if the dimensions of the experimental
paratus are much larger than the intrinsic length scale,
instability can develop free from the influence of boundar
and produce truly three-dimensional patterns. Other syst
exhibiting pattern formation in three dimensions inclu
block copolymer melts@4# and parametric oscillators in op
tics @5#. In the former a polymer consisting of long blocks
different monomers starts in a spatially uniform state.
time progresses, the different monomer types self-segre
into distinct domains, frequently with spatial periodicit
Both systems produce spatial structures that are simila
those predicted by the general theory for three-dimensio
patterns on spatially periodic cubic lattices@6,7#. This analy-
sis focuses on the vicinity of a steady state instability
generic systems with translation invariance in three dim
sions, and determines the types of spatially periodic patte
with the symmetry of the different types of cubic lattices a
their stability properties with respect to perturbations
these lattices, but other types of perturbations have not b
considered. In particular the stability properties of the p
dicted stable states with respect to long-wavelength per
bations remain unknown. In two dimensions such pertur
tions are known to be important in so far as they are involv
in the various instabilities~such as the Eckhaus, zigzag, a
skew-varicose instabilities! that restrict the possible wave
length of the pattern. These instabilities, originally identifi
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in the stability theory for convective rolls, are generic in t
sense that they destabilize roll-like states in all continu
systems with Euclidean symmetry in two dimensions.

Calculations of this type provide useful information ev
about systems that do not strictly satisfy all the hypothe
used to construct the theory. The Turing instability is a ca
in point. Actual experiments on Turing structures invol
concentration gradients of the feed chemicals, which nec
sarily break both the homogeneity and the isotropy of
system. This is the case, for example, in the experime
reported in Refs.@2# and @3# in which the feed gradient wa
imposedin the planeof the observed patterns and not pe
pendicular to it as in subsequent experiments. Despite
the hexagons that were predicted for a homogeneous sy
were still found. Thus a study of the corresponding probl
in three dimensions should likewise produce useful resu
In fact, because the characteristic length scale of the in
bility is so much smaller than all the external dimensions,
authors of Refs.@2# and@3# conclude that the observed stru
tures must in fact be three-dimensional and that the top-v
hexagonal pattern is actually a two-dimensional projection
a body-centered-cubic~bcc! structure. More recently, two
dimensional black-eye patterns in reaction-diffusion syste
have also been explained in terms of sections of a th
dimensional bcc structure@8#. The block copolymer melts
investigated in Ref.@4# do not suffer from these limitations
of the theory.

It is important, therefore, that the methods used to stu
pattern formation and stability in two dimensions be e
tended to the three-dimensional case. For patterns on a
tially periodic three-dimensional lattice the equivariant bifu
cation theory approach has led to an almost comp
description of the possible stationary patterns on the sim
cubic ~sc!, face-centered-cubic~fcc!, and bcc lattices and
their stability properties with respect to all perturbations
these lattices@6,7#. Near onset these patterns are describ
by ~real! functions of the form

c~xW !5(
i 51

N

zie
ikW i•xW1c.c.1n.l.t., ~1.1!

where ukW i u5kc , i 51, . . . ,N and N53, 4, and 6, respec
tively. The shorthand n.l.t. represents terms that are nonlin
©2001 The American Physical Society14-1
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in the complex amplitudeszi ; these satisfy appropriate am
plitude equations and thereby specify the possible patter

In this paper we extend these calculations to examine
stability properties of patterns with wave numbers that dif
from the optimum wave number selected at onset, focus
on phaseinstabilities. As in one- and two-dimensional pa
terns these instabilities limit the wavelength of stable s
tially periodic patterns, leading~in two dimensions! to the
so-called Busse balloon. The instabilities arise either a
result of the destabilization of neutrally stable translat
modes by long-wavelength perturbations or due to lo
wavelength symmetry-breaking bifurcations. Because
their long-wavelength nature both types of instabilities
easily identified. In one dimension the stability limit is pr
vided by the well-known Eckhaus instability. This instabili
is identified as follows. Near onset the evolution of an a
plitude z(t) of a mode with wave numberk in a left-right
symmetric system is described by the amplitude equatio

ż5@l2d~k2kc!
2#z1auzu2z1¯, ~1.2!

wherel is the bifurcation parameter (ulu!1) andd.0 and
a,0 are real, model-dependent coefficients. This mode
a linear growth ratel2d(k2kc)

2, and thus the trivial state
is unstable to any modek with

d~k2kc!
2,l.

Only some of these wave numbers, however, can appea
stable patterns. To see which wave numbers, consider a m
of wave numberk5kc1q, with q small, corresponding to a
space-dependentamplitude of the critical mode

z~x,t !5reiqx.

Equation ~1.2! implies that at equilibrium r 252(l
2dq2)/a. Note that ulu!1 implies thatuqu!1. This dis-
torted state is linearly unstable with respect to perturbatio
with wave numberk8,uk8u!uqu if dq2,l,3dq2 @1#, i.e.,
when l.0 the trivial state is unstable to modes withq2

,l/d but if l/3d,q2,l/d these modes are themselves u
stable on an even longer time scale. Thus only states
q2,l/3d are stable. For largerq the instability shifts the
locations of the maxima and minima of the pattern, there
altering its wave number. The long term result is a sl
distortion of the pattern until it becomes stable with resp
to long-wavelength perturbations, i.e., until the system
justs its wave number to one within the acceptable ra
q2,l/3d. This usually occurs via phase slips that occur
locations where the amplitudez(x,t) passes through zero@9#.
Only at the band center (q50) is the one-dimensional pa
tern stable for all supercriticall.

The above description applies equally to Rayleigh-Be´nard
rolls and Taylor-Couette vortices, which are two-dimensio
fluid states but in which the transverse~i.e., bounded! dimen-
sion is ‘‘trivial.’’ These states are therefore effectively on
dimensional and the Eckhaus instability they undergo i
consequence of the destabilization of a neutral mode co
sponding to translation of the pattern in the direction of
wave vector. For patterns, such as rolls in a plane, that
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invariant under translations in one direction, a different
stability can take place. This is the zigzag instability and
breaks the translation invariance of the pattern along the
axis. The skew-varicose instability can be thought of a
combination of these two fundamental instabilities; for th
instability the associated displacement vector is neither p
allel nor perpendicular tokW8. In contrast, a square pattern
a plane is two-dimensional in a nontrivial way, because
breaks translation invariance intwo independent directions
Such patterns have two neutral directions~hereafter phase
directions! and consequently their stability properties are d
scribed by apair of coupled phase equations. As a resul
square pattern also undergoes two types of instability,
this time both are associated with the destabilization o
neutral mode. Despite this difference in their origin we fo
low customary terminology and refer to these as the Eckh
instability ~present forl,const3q2) and the zigzag insta
bility ~present forq,0) @10#. For hexagons, analysis of th
type described in Refs.@11# and@12# shows that the region o
stability in theq-l plane—theBusse balloon—is completely
closed by long-wavelength instabilities alone. This result
particularly significant in those cases in which the hexag
do not lose stability to rolls with increasingl, since nothing
beyond long-wavelength theory is required to bound
Busse balloon. We show here that this property is shared
the hexagonal prism and bcc states present in models o
Turing instability. For these and other three-dimensional p
terns, the possibilities for instability are yet richer and the
are described here in detail. It should also be mentioned
additional instabilities, the so-called amplitude instabilitie
may be present. These include the cross-roll and obli
cross-roll instabilities of rolls. These instabilities select
stable wave number by destroying the existing pattern
regrowing a new one with a different orientation and a mo
favorable wavelength. Such amplitude instabilities may u
der appropriate circumstances provide a more stringent l
on the range of stable wave numbers than the phase in
bilities alone@11#.

The traditional methods for studying this problem in tw
dimensions, such as the Newell-Whitehead-Segel appro
@13#, lead to envelope equations that break the isotropy of
whole system. This is a consequence of rigorous adhere
to asymptotics, which can only describe roll structures t
are near a straight roll pattern with the same orientationev-
erywhere. However, recently Gunaratne@14# introduced a
new procedure characterized by a strict adherence to sym
try ~in this case isotropy! at the expense of retaining certa
formally small terms. Gunaratne demonstrated by numer
simulations that his procedure allows substantial change
orientation of the patterns over large distances and tha
provides a better qualitative description of the modulation
roll patterns than the traditional asymptotic procedure,
least when compared with experiments and direct numer
simulation of pattern-forming systems. Of course this is b
cause the calculations are never in fact performed in
asymptotic regime. But the point remains that even in
asymptotic regime the traditional theory is unable to descr
changes in roll orientation over arbitrarily large distances.
this paper we therefore adopt Gunaratne’s approach and
4-2
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LONG-WAVELENGTH INSTABILITIES OF THREE- . . . PHYSICAL REVIEW E 64 036214
eralize it to three-dimensional perturbations. In fact this
proach is ideally suited to three dimensions and becaus
respects isotropy, it allows a relatively straightforward ana
sis of the resulting modulation equations.

In Sec. II we briefly describe Gunaratne’s approach a
introduce his ‘‘covariant’’ derivativeh i . In Secs. III, IV, and
V we solve the resulting modulation equations for the th
cubic lattices of interest and determine which solutions m
be expected to be stable in each of these cases. In the
case stable small amplitude solutions are present only w
the quadratic terms in the amplitude equations are sm
This is the case, in appropriate parameter regimes, for
two models of the Turing instability described in Sec. V
Although this paper is motivated by the Turing instability w
adopt a model-independent approach throughout, and
emphasize that the results are therefore applicable toany
three-dimensional pattern-forming system with the appro
ate periodicity. In Sec. VII we point out certain similaritie
among the calculations for the different solutions and su
marize these in terms of general statements about pa
formation in higher-dimensional systems. Since our analy
involves the computation of eigenvalues of Hermitian ma
ces we find it convenient to employ quantum mechan
perturbation theory and the associated Dirac bra-ket nota
@15#.

II. ENVELOPE EQUATIONS IN THREE DIMENSIONS

In this section we consider a general system of isotro
partial differential equations undergoing a steady state in
bility in three dimensions. Isotropy implies that the neut
stability curve takes the form

l5 f ~k2!.

It follows that instability sets in atlc[ f (kc
2), where

f 8(kc
2)50 provided f 9(kc

2).0. In the following we assume
that kc.0 so that the instability has a finite wavelength. W
are interested in patterns that form for slightly supercriti

values ofl and with wave vectorskW̃ , whose lengths are clos
to kc . In the following we choose a length scale such tha

kc51 and writekW̃[ k̂1qW , whereuk̂u51. Thus

l2lc5 (
n52

`
1

n!
f ~n!~kc

2!@2k̂•qW 1q2#n.

The terms on the right side of this equation are respons
for the presence of the~slow! spatial derivatives in the~lin-
earized! amplitude equation. These are obtained by replac
qW with 2 i¹W , resulting in the contribution

(
n52

`
1

n!
f ~n!~kc

2!~22i !nhnzi ,

where

h[ k̂•¹W 2
i

2
¹2,
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and zi is now a function of a~slow! spatial variablexW . As
emphasized by Gunaratne@14# the operatorh is rotationally
invariant. To see what we mean by this, consider the am
tude equation for a roll pattern with wave number in thek̂1

direction, say. Such a pattern is described by Re@A1eik̂1•xW#.
This orientation is arbitrary, of course, and we would like
require that a rotation of this state through an angleu, which

takes the amplitudeA1 into A1eiD k̂1•xW, should be another
solution to the envelope equation. HereD k̂15Ruk̂12 k̂1 ,
where Ru is the rotation matrix. This is equivalent to th
requirement

h1eiD k̂1•xW50.

This condition is satisfied byh15 k̂1•¹W 2( i /2)¹2, but not
by its truncation tok̂1•¹W . Consequently, if we wish to retain
the isotropy of the Euclidean group we must expand
quantities in powers ofh and not in powers ofqW as obtained
from the traditional asymptotic approach: in the latter a
proach any truncation breaks isotropy and hence a fun
mental symmetry of the pattern-forming system. In the f
lowing we will therefore truncate our expansion to lowe
order inh, and not inqW . For example, retaining all terms o
the formhmzn with m1n<3, Eq. ~1.2! becomes

ż5lz1auzu2z1dh2z1O~h4,z4!, ~2.1!

whereO(h4,z4) indicates terms of the formhmzn with m
1n>4. A formal justification of the resulting equation@a
modification of the Newell-Whitehead-Segel~NWS! equa-
tion# has been given by Graham@16#. However, sufficiently
near onset, this modification has no qualitative effect and
still finds that the Eckhaus instability is present for wa
numbers in the rangel/3d,q2,l/d. In fact, as discussed
further below, the use of envelope equations truncated
formly at orderO(h3,z3) has only a benign effect on th
stability boundaries of all spatially uniform patterns, even
two and three dimensions, although in two dimensions s
nificant qualitative differences between the two truncatio
arise when these are used to study domain boundaries@14#.
Rather than say that the inclusion of the higher order te
creates an extra symmetry that we would like, we prefer
say that the neglect of these terms violates a symmetry
the physical problem manifestly possesses.

On the bcc lattice the presence of a quadratic equivar
~see below! allows the addition of terms that are quadratic
the amplitudeszi containing one factor ofh, cf. Ref. @17#.
We do not consider this possibility here.

III. THE SC LATTICE

The sc lattice is generated by the six wave vectors6kW i ,
i 51,2,3, taken from the sphere of marginally stable wa
vectors, where

k̂15 x̂, k̂25 ŷ, k̂35 ẑ
4-3



T. K. CALLAHAN AND E. KNOBLOCH PHYSICAL REVIEW E 64 036214
TABLE I. Maximal isotropy branches for the sc lattice. Heres1[( i 51
3 uzi u2.

Name Solution s1 Branching equation

Trivial ~0,0,0! 0 s150
Lamellas (x,0,0) x2 l1(h1,s1

1h3)s150
Square prisms (x,x,0) 2x2 l1

1
2 (2h1,s1

1h3)s150
Simple cubic (x,x,x) 3x2 l1

1
3 (3h1,s1

1h3)s150
-

lts

ns
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ng
are unit vectors in Cartesian coordinates (x,y,z). With the
spatially dependent terms added, the~truncated! envelope
equations take the form@7#

ż15lz11~h1,s1
1h3!uz1u2z11h1,s1

~ uz2u21uz3u2!z11dh1
2z1

1O~h4,z4!, ~3.1!

wherez5(z1,z2,z3), together with two other equations ob
tained by cyclic permutation. Herel!1 is a ~real! bifurca-
tion parameter, whileh1,s1

, h3 , and d.0 are real coeffi-

cients. Although the coefficientd can be scaled out by
rescaling time andl ~the choicekc51 fixes the length scale!
we retain it in what follows, in order to compare the resu
for qÞ0 with those listed in Table I for thesamel but at the
band center (q50). We are only interested in those solutio
that can be stable with respect to perturbations on the
lattice, i.e., simple-cubic patterns~hereafter sc! and lamellas
~rolls! @7#.

For supercritical values ofl all wave vectors within a
spherical annulus become unstable and spatially periodic
terns with different values ofukW j u may be constructed. As in
Sec. I these correspond to distorted patterns of the form

zi~xW ,t !5eiqW i•xWr i ,

where theqW i denote small but arbitrary changes of the a
plitude and direction of the lattice wave vectors~hereafter
referred to asdistortionsof the lattice! and ther j satisfy

l1~h1,s1
1h3!r 1

21h1,s1
~r 2

21r 3
2!2d@ k̂1•qW 11 1

2 q1
2#2

5O~q3,r 3! ~3.2!

and permutations. Note that the patterns on distorted latt
remain periodic, but with the lengths and angles of the w
vectors slightly altered. In the following we write

@ k̂i•qW i1
1
2 qi

2#25 1
4 @~ k̂i1qW i !

221#25 1
4 ~ k̃i

221!2, ~3.3!

where k̃W i[ k̂i1qW i , i 51,2,3. To determine the stability o
such distorted patterns with respect to long-wavelength
turbations we let

zi~xW ,t !5eiqW i•xW@r i1a i~ t !eikW8•xW1b̄ i~ t !e2 ikW8•xW#, ~3.4!

wherekW8 represents the perturbation wave vectorukW8u!uqW i u
!1, i 51,2,3, and linearize the resulting equations ina i , b i .
03621
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A. The solution sc

We first look at the sc solution, for whichz15z25z3
[r . In order that this solution be stable with respect to p
turbations on the sc lattice, we assume that~see below!

h3,0, 3h1,s1
1h3,0, l2dq2.0. ~3.5!

We consider uniformly distorted sc states, i.e., states w
uk̃1u5uk̃2u5uk̃3u[ k̃, say, but do not demand that theqW i are
necessarily parallel to thek̂i . Such states are given by

l1~3h1,s1
1h3!r 22 1

4 d~ k̃221!250. ~3.6!

Perturbations of this distorted equilibrium evolve accordi
to the linearized equations

ȧ15~h1,s1
1h3!r 2~a11b1!1h1,s1

r 2~a21b2!

1h1,s1
r 2~a31b3!2da1@~ k̃1

221!kW̃1•kW81~kW̃1•kW18!2

1 1
2 ~ k̃1

221!k82#1O~k83;q3,r 3!,

where O(k83;q3,r 3) indicates terms of the formk8 lqmr n

with l>3 or m1n>3. The equation forḃ1 is obtained by
replacingkW8 by 2kW8 and exchanginga i andb i , while those
for ȧ2 , . . . ,ḃ3 are obtained by permutation.

With the basisj5(a1 ,b1 ,a2 ,b2 ,a3 ,b3), the lineariza-
tion of our system becomes

j̇5~H01H11H21H3!j,

where

H05r 2S P Q Q

Q P Q

Q Q P
D ,

P5~h1,s1
1h3!S 1 1

1 1D
Q5h1,s1S 1 1

1 1D ,

H152d~ k̃221!S K1

K2

K3

D ,

K i5~kW̃ i•kW8!S 1

21D ,
4-4
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H252dS K1
2

K2
2

K3
2
D ,

H352
d

2
~ k̃221!k821.

Here H0 is O(r 2)5O(q2)5O(l), H1 is O(qk8), H2 is
O(k82), and H3 is O(qk82). In the following we work to
O(k82) and drop terms ofO(qk82). Since the matrixH0
1H11H21H3 is real symmetric all its eigenvalues are re
and there are no Hopf bifurcations.

The ~orthogonal! eigenvectors ofH0 are the columns of

F5~f1 , . . . ,f6!5S 21 0 0 1 1 1

1 0 0 1 1 1

0 21 0 21 1 1

0 1 0 21 1 1

0 0 21 0 22 1

0 0 1 0 22 1

D
with eigenvalues

$ei% i 51, . . . ,65r 2$0,0,0,2h3,2h3,2~3h1,s1
1h3!%,

respectively. These are the stability eigenvalues of the
state with respect to perturbations on the sc lattice. The
equalities~3.5! guarantee that the last three eigenvalues
negative, so that the eigenvectorsuf4&, uf5&, and uf6& are
stable and remain so for smallkW8. In the following we em-
ploy quantum mechanical perturbation theory and the D
bra-ket notation, so thatuf4& is a column vector and̂f4u is
the row vector, i.e., the transpose conjugate ofuf4&, etc. To
determine whether the first three eigenvectors remain st
whenk8Þ0, we must look at terms of higher order ink8/q.

Before proceeding we examine the physical interpreta
of the null eigenvectors ofH0 . Suppose we find that the sta
a i5b i50 loses stability to the eigenvectoruf1&. What ef-
fect does this have on the sc state? The values ofa1 andb1
start to grow from 0 witha152b15ua1ueiw. While these
are still extremely small we have, approximately,

z15eiqW 1•xW@r 1a1eikW8•xW2ā1e2 ikW8•xW#

'r expH i FqW 1•xW1
2ua1u

r
sin~kW8•xW1w!G J .

One way to interpret this result is to look at the positions
the maxima of the pattern. We know from Ref.@7# that the
positions of the maxima of the sc solution form a simp
cubic lattice. At leading order the pattern is defined by
scalar function

c~xW !5(
i 51

3

zie
ik̂ i•xW1c.c.,
03621
l
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re
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and the maxima are found by requiring that

~ k̂i1qW i !•xW1
2ua1u

r
sin~kW8•xW1w!52nip, niPZ,

with ua1u!r . The effect of the proposed long-waveleng
perturbation is to shift the positions of the maxima sligh
from their original (a150) locations. Since onlyz1 is af-

fected, the maxima are shifted in thekW̃1' k̂15 x̂ direction;

this shift is periodic with wave vectorkW8. If kW8ikW̃1 the shifts
form a ‘‘longitudinal’’ wave, with alternating regions of com
pression and rarefaction of the maxima. This is the Eckh
instability, and is illustrated in Fig. 1. The figure shows

cross section through thex-y plane. If kW8'kW̃1 , the perturba-
tion is ‘‘transverse,’’ with maxima shifted at right angles
the modulation wave vector. This is the zigzag instabili
and is illustrated in Fig. 2. If neither of these relationshi
holds, the instability is called skew varicose, an example
which is shown in Fig. 3.

All of the modes for whicha i52b i can be interpreted a
modulations of the phase, and we will refer to these as
modes. Modes for whicha i51b i can analogously be inter
preted as modulations of the amplitude of the pattern, and
refer to these as AM modes.

Since the operationkW8→2kW8 merely exchangesa i and
b i , leaving the eigenvalues unchanged, any perturbation
the eigenvalues ofH1 must be even inkW8, and thus the first

FIG. 1. The Eckhaus instability in thex-y plane. The unper-
turbed solution has maxima~white! at the vertices of a square la
tice and minima~black! at the vertices of another square lattic
Thus the unperturbed solution could be the sc or square prism
lutions ~or squares on the two-dimensional square lattice!. For the
Eckhaus instability, the displacements of the maxima are paralle

the modulation wave vectorkW8, here both in thex direction.
4-5
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order perturbation vanishes identically. To perform seco
order perturbation theory onH1 we first define the direction
cosines forkW8,

A[ k̂1•kW8/k8, B[ k̂2•kW8/k8, C[ k̂3•kW8/k8.

FIG. 2. The zigzag instability, shown by the same means a
Fig. 1. The displacements of the maxima are in thex direction,

while the modulation wave vectorkW8 is in they direction.

FIG. 3. The skew-varicose instability, shown by the same me
as Figs. 1 and 2. The displacements of the maxima are in thx

direction, but the modulation wave vectorkW8 is neither parallel nor
perpendicular to them.
03621
d

Then

^f l uH1uf i&u i 51,2,3
l 54,5,6

52dk8~ k̃221!

i
↓

l→

S A A A

2B B B

0 22C C
D

~states not normalized).

If we normalize the states properly, we get the second or
matrix ~see Ref.@15#!

V i j [(
l 54

6
^f i uH1uf l&^f l uH1uf j&

2el

52d2k82~ k̃221!2H 1

6r 2h3
S 2A2 2AB 2AC

2AB 2B2 2BC

2AC 2BC 2C2
D

1
1

6r 2~3h1,s1
1h3! S A2 AB AC

AB B2 BC

AC BC C2
D J .

The overall factor (k̃221)2 is alreadyO(q2). This expres-
sion is to be combined with the corresponding first ord
result forH2 , which is of the same order asV,

^f i uH2uf j&u i , j 51,2,352dk82S A2

B2

C2
D .

The result can be simplified using the expression

r 25

1
4 d~ k̃221!22l

3h1,s1
1h3

5
dq22l

3h1,s1
1h3

from Eq. ~3.2!, where we have used the substitution

k̃5A112q. ~3.7!

Thus q5 k̂1•qW 11 1
2 uqW 1u2 ~and likewise fori 52,3) and this

new variable absorbs all contributions from the second
rivative in h. For smallq ~or uqW 1u) this is a well-defined, i.e.,
one-to-one, relationship betweenq andk̃. The eigenvalues of
the resulting perturbation matrixV i j 1^f i uH2uf j& are now
dk82 times the solutions int to

t31Dt21Jt1Y50,

where

D5
~A21B21C2!@l2G2dq2#

l2dq2
,

in

s
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J5
~A2B21A2C21B2C2!@l2G1dq2#@l2G3dq2#

~l2dq2!2
,

Y5
A2B2C2~l23dq2!@l2G3dq2#2

~l2dq2!3
,

and

G1[
3h312h1,s1

h3

.0, G2[
3h314h1,s1

h3

.0,

G3[
3h316h1,s1

h3

.0.

Note that, if we use Eq.~3.5!, then

h1,s1
,0⇒3,G1,G2,G3 ,

~3.8!
h1,s1

.0⇒3.G1.G2.G3 .

The simple-cubic pattern is stable~with respect to long-
wavelength instabilities! if the three eigenvalues have
negative real part for all values ofA, B, and C, which re-
quiresD, J, andY all to be positive. Since the denominato
are already positive, we need only examine the numera
We examine first the possibility thatY passes through 0 be
coming negative and triggering an instability. This occurs

l,3dq2.

The inequalities~3.8! indicate that this condition provide
the stability limit whenh1,s1

.0. To interpret the nature o

this instability we substitutel53dq2 into V i j 1^f i uH2uf j&
and find that the null eigenvector is of the for
(BC,AC,AB), which in the original j basis is BCuf1&
1ACuf2&1ABuf3&. This is therefore a general skew
varicose instability, with wave vectorkW8 pointing in the di-
rection (A,B,C), but the maxima shifted in the directio
(BC,AC,AB). It can, however, be a zigzag instability
ABC50, or an Eckhaus instability ifA25B25C25 1

3 . The
caseA50 ~or B50 or C50) is special because the calc
lation must be carried to next order in perturbation theory
order to determine stability. We postpone this calculation

When h1,s1
,0 the corresponding stability boundary

given byl5G3dq2. Along this curve bothY andJ vanish
and there is therefore a double zero eigenvalue. MoreoveJ
also passes through zero along the curvel5G1dq2. The
system is thus also unstable (J,0) when

G1,l/dq2,G3 for h1,s1
,0,

G1.l/dq2.G3 for h1,s1
.0.

Since the two null eigenvectors whenl5G3dq2 are (B,
2A,0) and (C,0,2A) and these span the plane perpendi
03621
rs.

r

n

-

lar to the modulation wave vectorkW85(A,B,C), this insta-
bility corresponds to a zigzag instability.

The remaining possibility for instability, thatD,0, occurs
for l/dq2,G2 , but in view of ~3.8! this condition does not
introduce any new stability boundaries. The condition b
comes important, however, whenh1,s1

,0 because it implies

that the simple-cubic pattern will be unstable for alll
,G3dq2, i.e., that the pattern is also unstable in the inter
3dq2,l,G1dq2.

We still have to deal with the caseA50. In this caseY
vanishes identically to this order in perturbation theory.
determine whether or not it actually passes through 0,
look at terms that areO(qk82). We get no such term from
H1 , whereas to the order we desire,

^f i uH2uf j&u i , j 51,2,352k82dS 0

B2

C2
D

22k8dS 0

B~qW 2•kW8!

C~qW 3•kW8!
D

and

^f i uH3uf j&52dqk821.

Our new perturbation matrix is

V i j 1^f i uH2uf j&1^f i uH3uf j&

5~V i j 1^f i uH2uf j&!old1H̃

5~V i j 1^f i uH2uf j&!old

22k8dS 0

B~qW 2•kW8!

C~qW 3•kW8!
D 2dqk821.

We calculate the new eigenvalue by using perturbat
theory upon our previous perturbation results. That is,
wish to find corrections to the 0 eigenvalue of the mat
(V i j 1^f i uH2uf j&)old for the caseA50. We assume first tha
this eigenvalue is nondegenerate. Then the null eigenve
is ^f1u5(1,0,0) and

^f1uH̃uf1&52dqk82.

Thus for q,0 there exists akW8 that makes our system un
stable. Furthermore, ifA50, thenkW8 is in they-z plane, but
the unstable eigenvector isuf1& so the shifts are in thex
direction. Thus this is a zigzag instability. To check for po
sible multiple 0 eigenvalues we setA50 and compute the
determinant of the nonvanishing 232 submatrix of (V i j
1^f i uH2uf j&)old ,
4-7
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B2C2d2@l2G1dq2#@l2G3dq2#

~l2dq2!2
k84.

The instabilities due to thel-dependent terms in the numer
tor have already been described. The only remaining po
bilities for finding a multiple zero eigenvalue areB50 and
C50. For example, ifA5B50 ~and henceC51) there are
two independent null eigenvectors spanning thex-y plane
while kW8 is in thez direction, again corresponding to a zigza
instability. We summarize the above results in Fig. 4.

It is worth noting that the substitution~3.7!, namely, k̃
5A112q implies

~ k̃221!254q25@2~ k̂1•qW 1!21uqW 1u2#2.

Consequently we may think ofq as the magnitudek̂1•qW 1 and
Eq. ~3.7! as anapproximationinstead of a substitution intro
ducing a new variable. This approximation is equivalent
neglecting the higher order term2( i /2)¹2 in h1 . Thus the
only difference between the calculation with isotrop
preserving terms and without lies in the near-identity re
tionship betweenq and k̂1•qW 1 . The stability diagrams calcu
lated in these two ways therefore differ only by a ne
identity rescaling of the horizontal axis. This is an exam
of a general result that the use ofh does not affect the
stability properties ofperiodic solutions, at least in the limi
of long-wavelength perturbations@14#.

B. The lamellas

To study the stability of lamellas on the sc lattice, w
assumer 15r , r 25r 350. We again restrict ourselves to

FIG. 4. The lower portion of the Busse balloon for the sc so
tion, showing the neutral stability~NS!, skew-varicose~SV!, and
zigzag~ZZ! boundaries and the resulting region of stability. The S
boundary is present whenh1,s1

.0, and is replaced by another zig
zag boundary whenh1,s1

,0.
03621
si-
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subset of all possible distortions of the lattice. The equil
rium condition~3.2!, in the limit of smallz2 andz3 , yields
the two conditions

l1~h1,s1
1h3!r 25 1

4 d~ k̃1
221!21O~q3,r 3! ~3.9!

and

h3r 25 1
4 d~ k̃1

221!22 1
4 d~ k̃2

221!2, k̃2
25 k̃3

2.

The latter appears to provide a restriction on the allow
distortion of the sc lattice. In fact, an examination of t
calculation that follows shows readily that none of the s
bility results depend on this restriction, i.e., the results ap
to strictly one-dimensional structures~lamellas!. The addi-
tional equations are retained purely for convenience so
all the problems analyzed have the same algebraic struc
and can therefore be solved by an identical method. In
present case we find that the new lowest order matrix is

H05r 2S P

Q

Q
D , P5~h1,s1

1h3!S 1 1

1 1D ,

Q52h3S 1

1D .

The ~orthogonal! eigenvectors are the columns of

F5~f1 , . . . ,f6!5S 1 1 0 0 0 0

21 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

D ,

and correspond to the eigenvalues

$ei% i 51, . . . ,65r 2$0,2~h1,s1
1h3!,2h3 ,2h3 ,2h3 ,2h3%,

respectively. Thus only the first eigenvalue can trigge
long-wavelength instability. Note, in particular, that the la
four eigenvalues are stable~if h3.0) indicating that the con-
straints in Eq.~3.9! play no role. As before, the first orde
perturbation calculation forH1 does not contribute, whileH2
yields

^f1uH2uf1&52dk82A2.

For the normalized second order calculation forH1 we first
note that

^f l uH1uf1&u l 52, . . . ,65dk8~ k̃1
221!~2A 0 0 0 0!

and then calculate the second order contribution as for th
pattern. The combined result is the 131 matrix

-

4-8
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TABLE II. Maximal isotropy branches for the fcc lattice.

Name Solution s1 Branching equation

Trivial (0,0,0,0) 0 s150
Lamellas (x,0,0,0) x2 l1(h1,s1

1h3)s150
Rhombic prisms (x,x,0,0) 2x2 l1

1
2 (2h1,s1

1h3)s150
fcc (x,x,x,x) 4x2 l1

1
4 (4h1,s1

1h31p3)s150
Double diamond (2x,x,x,x) 4x2 l1

1
4 (4h1,s1

1h32p3)s150
th
l-

ha

iffe
r

a
ei
th

ilit

e
ity
il
is

io

rns
t-

on.
um-
g-
t-

a-

s

V i j 1^f i uH2uf j&52
d2k82~ k̃1

221!2

2~h1,s1
1h3!r 2

A22dk82A2.

As before, we use the substitutionk̃15A112q, which trans-
forms this result into

V i j 5^f i uH2uf j&52
l23dq2

l2dq2
dk82A2.

If AÞ0 then forl,3dq2 the lamellas are unstable touf1&.
This eigenvector corresponds to a shift of the maxima in
x direction. When 0,A,1 this is a skew-varicose instabi
ity, and is independent of the perturbation wave vectorkW8. In
theq-l plane this degeneracy manifests itself in the fact t
the stability boundary is identical for every direction ofkW8.
The retention of terms of higher order inq resolves the de-
generacy and separates the stability boundaries for the d
entkW8. With these higher order terms, the stability bounda
in the q-l plane forA away from 0 is given by

l53dq22
2dq3

A2
1O~q4!,

showing that instability first sets in atA51; this is the Eck-
haus instability.

The degeneracy can also be resolved by the NWS
proach. In fact, these two approaches differ only in th
truncations, with Gunaratne’s truncation reducing to
NWS amplitude equation at leading order inq. The latter
approach leads to a similar expression for the stab
boundary,

l53dq22dq32
2dq3

A2
1O~q4!,

whereq5q11 1
2 q1

2 is still given by Eq.~3.7!. The difference
between these two expressions is due to a differenc
higher order in the approximation to the neutral stabil
curve, but contributes only a small overall shift of the stab
ity boundary. In particular, the instability that first sets in
still of Eckhaus type.

If A50ÞB, C, kW8 is perpendicular tok̂1 and the same
calculation as for the sc solution shows that the contribut
from O(qk82) terms is

^f1uH̃uf1&5^f1uH3uf1&52dqk82.
03621
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A zigzag instability is therefore present forq,0. Note that
sinceuqu!1 the growth rate of this instability isslowerthan
that of the Eckhaus instability computed above.

IV. THE FCC LATTICE

The analysis of the stability properties of periodic patte
on the fcc lattice is similar to that performed for the sc la
tice. Such patterns are generated by the vectors6 k̂i , where

k̂15~ x̂2 ŷ2 ẑ!/A3, k̂25~2 x̂1 ŷ2 ẑ!/A3,

k̂35~2 x̂2 ŷ1 ẑ!/A3, k̂45~ x̂1 ŷ1 ẑ!/A3.

The resulting amplitude equations take the form@6#

ż15lz11~h1,s1
1h3!uz1u2z11h1,s1

~ uz2u21uz3u21uz4u2!z1

1p3z̄2z̄3z̄41dh1
2z11O~h4,z4!

with three other equations obtained by cyclic permutati
The possible maximal steady states on this lattice are s
marized in Table II. As in the sc case we consider lon
wavelength instabilities of only the potentially stable pa
terns, i.e., the fcc and double diamond~dd! patterns, as well
as lamellas@6#.

A. The fcc and dd solutions

The fcc solution is the solution withr i5r , i 51,2,3,4. The
results for the dd solution can be obtained by changingp3
→2p3 in what follows, and are therefore not listed sep
rately. We consider the stability of equilibria of the form

l1~4h1,s1
1h31p3!r 25 1

4 d~ k̃i
221!21O~q3,r 3!

and require thek̃i
2 to be the same for everyi. The evolution

equation for the perturbationa1 is now

ȧ15r 2@~h1,s1
1h3!~a11b1!1h1,s1

~a21b21a31b31a4

1b4!1p3~b21b31b42a1!#2da1@~ k̃1
221!~kW̃1•kW8!

1~kW̃1•kW8!21 1
2 ~ k̃1

221!k82#1O~k83;q3,r 3!.

The corresponding result forb1 is obtained by changing the
sign ofkW8 and interchanginga i andb i , etc. These equation
yield the 434 matrices
4-9
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H05r 2S P Q Q Q

Q P Q Q

Q Q P Q

Q Q Q P
D ,

P5~h1,s1
1h3!S 1 1

1 1D 2p3S 1 0

0 1D ,

Q5h1,s1S 1 1

1 1D 1p3S 0 1

1 0D ,

H152d~ k̃221!S K1

K2

K3

K4

D ,

K j5~kW̃ j•kW8!S 1

21D ,

H252dS K1
2

K2
2

K3
2

K4
2

D ,
an
i

e

03621
H352
d

2
~ k̃221!k821.

The ~orthonormal! eigenvectors ofH0 are now the columns
of

F5~f1 , . . . ,f8!

5
1

2A2 1
1 21 21 1 1 21 21 1

21 1 1 21 1 21 21 1

21 1 21 1 21 1 21 1

1 21 1 21 21 1 21 1

21 21 1 1 21 21 1 1

1 1 21 21 21 21 1 1

1 1 1 1 1 1 1 1

21 21 21 21 1 1 1 1

2
and correspond to the eigenvalues
the
eed,
We
respectively. The first four eigenvectors are PM modes
the last four are AM modes. The undistorted fcc state
therefore stable, provided

p3.0, h32p3,0, 4h1,s1
1h31p3,0, ~4.1!

and we assume henceforth that these conditions hold.
The three null eigenvectorsuf1&, uf2&, and uf3& repre-

sent shifts in thex, y, andz directions, respectively, and thes
d
s
can all lead to long-wavelength instabilities. To calculate
corrections to the corresponding zero eigenvalues we n
as before, to go to second order in perturbation theory.
defineA, B, andC as before and include

D[ k̂4•kW8/k8.

Then
^f l uH1uf i&u i 51,2,3
l 54, . . . ,8

5
d

4
k8~ k̃221!

l
↓

i→

S 0 0 0

2A2B2C2D A1B2C2D A2B1C2D

A1B2C2D 2A2B2C2D 2A1B1C2D

A2B1C2D 2A1B1C2D 2A2B2C2D

2A1B1C2D A2B1C2D A1B2C2D

D . ~4.2!
4-10
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The eigenvector̂f4u plays no role and we delete it in th
sequel. By construction,H1 rotates PM modes into AM
modes and vice versa. Thus the second order perturbatio
the null PM eigenmodes can only contain cross terms invo
ing AM modes.

SinceA1B1C1D50, the result~4.2! reduces to

^f l uH1uf i&u i 51,2,3
l 55, . . . ,8

5
d

2
k8~ k̃221!

3

l
↓

i→

S 0 A1B A1C

A1B 0 B1C

A1C B1C 0

B1C A1C A1B

D .

We now define

A1B[22Z/A3, A1C[22Y/A3, B1C[22X/A3,

so that

X5 x̂•kW8/k8, Y5 ŷ•kW8/k8, Z5 ẑ•kW8/k8

and

X21Y21Z251. ~4.3!

These are again the direction cosines ofkW8. It follows that

^f l uH1uf i&u i 51,2,3
l 55, . . . ,8

52
d

A3
k8~ k̃221!S 0 Z Y

Z 0 X

Y X 0

X Y Z

D
so that

V i j [(
l 55

8
^f i uH1uf l&^f l uH1uf j&

2el

52d2k82~ k̃221!2

3H 1

6r 2~h32p3! S Y21Z2 XY XZ

XY X21Z2 YZ

XZ YZ X21Y2
D

1
1

6r 2~4h1,s1
1h31p3! S X2 XY XZ

XY Y2 YZ

XZ YZ Z2
D J .

To this result we add the first order contribution fromH2 ,

^f i uH2uf j&

52
d

3
k82S X21Y21Z2 2XY 2XZ

2XY X21Y21Z2 2YZ

2XZ 2YZ X21Y21Z2
D .
03621
of
-

We now proceed as in the sc case and express the total
turbation matrixV i j 1^f i uH2uf j& in terms ofq instead ofk̃
and eliminater 2. The eigenvalues aredk82 times the solu-
tions in t to

t31Dt21Jt1Y50,

where

D5
l2G1dq2

l2dq2
, J5

~l2G2dq2!NJ

9~p32h3!~l2dq2!2
,

Y5
@l2G2dq2#2NY

27~p32h3!~l2dq2!3
.

Here

G1531
8

3
h, G25314h,

where

h[2
2h1,s1

1p3

p32h3

@the inequalities~4.1! guarantee thath.2 1
2 ], while

NJ5~p32h3!~324X214X424Y214X2Y214Y4!l

1~8h1,s1
19h325p3212h3X2112p3X2112h3X4

212p3X4212h3Y2112p3Y2112h3X2Y2212p3X2Y2

112h3Y4212p3Y4!dq2 ~4.4!

and

NY5~p32h3!~124X214X424Y2120X2Y2216X4Y2

14Y4216X2Y4!l1~3h323p3212h3X2112p3X2

112h3X4212p3X4212h3Y2112p3Y2132h1,s1
X2Y2

160h3X2Y2244p3X2Y2232h1,s1
X4Y2248h3X4Y2

132p3X4Y2112h3Y4212p3Y4232h1,s1
X2Y4

248h3X2Y4132p3X2Y4!dq2. ~4.5!

In writing these expressions we have eliminatedZ using Eq.
~4.3!.

The symmetry of the perturbation matrix guarantees t
all the eigenvalues are real. They are all negative if and o
if D, J, andY are all positive. Consequently instability onl
arises when an eigenvalue~or two or three! passes through 0
i.e., the conditionY50 is a necessary condition for the a
pearance of~long-wavelength! instability. Nevertheless, it is
helpful to look first at the coefficientD. In view of the in-
equalities~4.1! and the requirementl.dq2, the coefficient
D,0 if and only if
4-11
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l/dq2,G1 .

Moreover,J has a single zero andY a double zero at

l/dq25G2

and instability occurs forl/dq2"G2 if NJ:0. The quantity
NJ50 whenl/dq25GJ(X,Y), a quantity readily obtained
from Eq. ~4.4!.

To establish the conditions for instability we need to d
termine, for givenh1,s1

, h3 , and p3 , the maximum and

minimum of GJ(X,Y) over all directions ofkW8, i.e., on the
domainX21Y2<1. The result is

extrema
X21Y2<1

GJ~X,Y!5$31 4
3 h,31 12

5 h%[$GJ,1 ,GJ,2%.

Similarly, for each direction of kW8, Y50 at l/dq2

5GY(X,Y), a quantity obtained from Eq.~4.5!. The extrema
on the domainX21Y2<1 are

extrema
X21Y2<1

GY~X,Y!5$3,31 16
7 h%;

we denote the second of these byGY . Thus forh.0,

3,GJ,1,GY,GJ,2,G1,G2 .

For h,0 the order is reversed, in which case the low
bound onh guarantees thatG2.1.

In view of the above results the fcc state is stable w
respect to long-wavelength instabilities if and only
l/dq2.max$G2,3%. As l passes throughG2dq2 two eigen-
values pass through 0 for every wave vectorkW8. The
corresponding null eigenvectors, obtained fromV i j
1^f i uH2uf j&, are (Y,2X,0) and (Z,0,2X). These span the
subspace perpendicular to (X,Y,Z) and indicate that the in
stability is a zigzag instability with no preference for a pa
ticular wave vectorkW8 and no preference for a particula
‘‘polarization.’’

As l passes through 3dq2 only certain wave vectors pro
duce unstable eigenvalues. SinceGY53 only for XYZ50
we assume without loss of generality thatZ50, so thatkW8
lies in the x-y plane. Substitution of bothZ50 and l
53dq2 into V i j 1^f i uH2uf j& yields the null eigenvecto
(2X,Y,0). Since this vector is in general neither parallel n
perpendicular tokW8, the instability triggered atl53dq2 is in
general a skew-varicose instability. However, ifkW8 points
along a coordinate axis, the instability becomes an Eckh
instability, while if it points midway between two axes th
instability is a zigzag instability. Note that there is no need
go to higher order in perturbation theory, and that there
therefore no zigzag instability boundary atq50.

The stability properties of the lamellas on the fcc latti
with respect to long-wavelength perturbations are identica
those for the lamellas on the sc lattice.
03621
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V. THE BCC LATTICE

Patterns with the symmetry of the bcc lattice are gen
ated by the 12 wave vectors6 k̂i , where

k̂15
1

A2
~1,1,0!, k̂25

1

A2
~0,1,1!, k̂35

1

A2
~1,0,1!,

k̂45
1

A2
~1,21,0!, k̂55

1

A2
~0,1,21!, k̂65

1

A2
~21,0,1!.

Symmetry arguments lead to the~truncated! amplitude equa-
tions @7#

ż15lz11 1
2 a12~z2z̄61z3z5!1a1uz1u2z11 1

4 a3~ uz2u21uz3u2

1uz5u21uz6u2!z11a8uz4u2z11 1
2 a16~z2z4z51z3z̄4z̄6!

1dh1
2z11O~h4,z4! ~5.1!

with the remaining equations generated by the symmetrie
the lattice. Since the quadratic equivariant renders all so
tions unstable near onset we focus, following Ref.@7#, on the
casea12'0 corresponding to a system with a weakly brok
additional symmetryz→2z. This assumption allows us to
drop any even terms inz allowed by symmetry involvingh
@17#, since the coefficients of these terms must also be
pected to beO(a12). When these terms are present but a
small, their main effect is to introduce a slight asymme
with respect toq50 in the stability regions computed below
The possible primary solution branches when this additio
symmetry is exact are listed in Table III. In the presence
small but nonzeroa12 only six of these branches rema
primary. The branches of lamellas, squares, bccI, and
solution A remain completely unaffected by this symmetr
breaking term, while the hexagonal prisms and bcc sta
now bifurcate in transcritical bifurcations. The remainin
branches become secondary as detailed in Ref.@7#.

In physical models the requirement thata12!ua1u may
introduce constraints on the remaining coefficients. This is
in particular for general two-species reaction-diffusion mo
els. These models have a special structure as a consequ
of the law of mass action and as a result their bifurcat
properties are a function of a single parameter. When
parameter is chosen so thata12!1 the remaining coefficients
have the fixed ratio

a1 :a3 :a8 :a16::21:28:22:24 ~5.2!

to leading order@18#. Motivated by this example we perform
detailed Busse balloon computations only for this choice
coefficients. This choice restricts us to the study of lon
wavelength instabilities of four states—bcc, bccI, lamell
and hexagonal prisms—as we now describe.

A. The solution bcc

We begin with the bcc solution, for whichr i5r ,
i 51, . . . ,6. Thedistorted equilibrium is given by
4-12
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TABLE III. Maximal isotropy branches for the bcc lattice with the extraz→2z symmetry.

Name Solution s1 Branching equation

Trivial ~0,0,0,0,0,0! 0 s150
Lamellas (x,0,0,0,0,0) x2 l1a1s150
Rhombs (x,x,0,0,0,0) 2x2 l1

1
8 (4a11a3)s150

Squares (x,0,0,x,0,0) 2x2 l1
1
2 (a11a8)s150

Hex (0,0,0,x,x,x) 3x2 l1
1
6 (2a11a3)s150

Tri i (0,0,0,x,x,x) 3x2 l1
1
6 (2a11a3)s150

bcc (x,x,x,x,x,x) 6x2 l1
1
6 (a11a31a81a16)s150

bccI i (x,x,x,x,x,x,) 6x2 l1
1
6 (a11a31a82a16)s150

123 (x,x,x,0,0,0) 3x2 l1
1
6 (2a11a3)s150

A (0,x,x,0,2x,x) 4x2 l1
1
8 (2a11a312a82a16)s150

B (0,x,x,0,x,x) 4x2 l1
1
8 (2a11a312a81a16)s150
we
l1a12r 1~a11a31a81a16!r
25 1

4 d@ k̃ i
221#21O~q3,r 3!

~5.3!

with k̃ i
2 the same for everyi. The evolution equation fora1

is

ȧ15 1
2 a12r ~a21a31a51b622a1!1r 2@a1~a11b1!

1 1
4 a3~a21b21a31b31a51b51a61b6!1a8~a4

1b4!1 1
2 a16~a21a41a51a31b41b622a1!#
03621
2da1@~ k̃1
221!~kW̃1•kW8!1~kW̃1•kW8!21 1

2 ~ k̃1
221!k82#

1O~k83;q3,r 3!.

Again, the result forḃ1 is similar, withkW8→2kW8 anda↔b,
and similarly fora2 , . . . ,b6 .

The linear problem can again be written in the formj̇
5(H01H11H21H3)j with j5(a1 , . . . ,b6), and is guar-
anteed to have real eigenvalues. To simplify the analysis
definez5 1

2 a12, assume the coefficients are in the ratio~5.2!
and scale the amplituder such thata1521. The lowest or-
der matrixH0 then has the orthogonal~but not normalized!
eigenvectors (f1 , . . . ,f12) given by the columns of
F5

¨

1 1 0 1 1 0 1 0 0 1 1 1

21 21 0 21 21 0 1 0 0 1 1 1

0 1 1 21 0 1 0 1 0 21 1 1

0 21 21 1 0 21 0 1 0 21 1 1

1 0 1 0 21 21 0 0 1 0 22 1

21 0 21 0 1 1 0 0 1 0 22 1

1 21 0 21 1 0 21 0 0 1 1 1

21 1 0 1 21 0 21 0 0 1 1 1

0 1 21 21 0 21 0 21 0 21 1 1

0 21 1 1 0 1 0 21 0 21 1 1

21 0 1 0 1 21 0 0 21 0 22 1

1 0 21 0 21 1 0 0 21 0 22 1

©

with corresponding eigenvalues
4-13
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The first six eigenvectors are PM modes and the last six
AM modes, with the first three PM modes being translatio
in thex, y, andz directions, respectively. In order for the bc
state to be stable with respect to perturbations on the
lattice, we demand that

1

15
,

r

z
,

1

5
,

i.e., the bcc solution must have finite amplitude. This is
consequence of the fact that the bifurcation to the bcc sta
transcritical, with the bcc state acquiring stability only at
secondary saddle-node bifurcation@7,18#.

As before we define (A,B,C,D,E,F)[( k̂1

•kW8/k8, . . . ,k̂B•kW8/k8) and set

X5 x̂•kW8/k8, Y5 ŷ•kW8/k8, Z5 ẑ•kW8/k8,

giving us A5(X1Y)/A2, etc. In the following the PM
ve

03621
re
s

cc

a
is

eigenvectorŝ f4u, ^f5u, ^f6u play no role and we delete
them. The~non-normalized! first order perturbation matrix is
therefore

^f l uH1uf i !u i 51,2,3
l 57, . . . ,12

52A2dk8~ k̃221!

3

l
↓

i→

S Y X 0

0 Z Y

Z 0 X

X 0 2Z

X 22Y Z

22X 22Y 22Z

D .

The correctly normalized total perturbation matrix is
V i j 1^f i uH2uf j&52d2k82~ k̃221!2H 1

8r ~5r 2z! S Y21Z2 XY XZ

XY X21Z2 YZ

XZ YZ X21Y2
D

2
1

24r ~3r 22z! S 2X2 2XY 2XZ

2XY 2Y2 2YZ

2XZ 2YZ 2Z2
D 2

1

6r ~215r 1z! S X2 XY XZ

XY Y2 YZ

XZ YZ Z2
D J

2
d

4
k82S 2X21Y21Z2 2XY 2XZ

2XY X212Y21Z2 2YZ

2XZ 2YZ X21Y212Z2
D .
-

he
n

o
near
The substitutionsk̃5A112q, Z2512X22Y2, and

z5
dq22l115r 2

2r

@see Eq.~5.3!# allow us to write the eigenvalues of the abo
matrix asdk82 times the solutions int to

t31Dt21Jt1Y50,

where

D5
dND

~l2dq2115r 2!~l2dq225r 2!~l2dq2212r 2!
,

J5
d2NJ

16~l2dq2115r 2!~l2dq2212r 2!2~l2dq225r 2!2
,

Y5
d3NY

64~l2dq2115r 2!~l2dq2212r 2!2~l2dq225r 2!3
,

and

ND5l322l2dq21ld2q422l2r 2136ldq2r 2234d2q4r 2

2195lr 42270dq2r 41900r 6.

The factorsNJ and NY are listed in Ref.@19#. All the ex-
pressions are functions ofdq2, so without loss of generality
we setd51 in what follows.

As in the fcc case it is helpful to look first at the coeffi
cientD. The requirement that the nontrivial eigenvaluesei all
be negative translates into the requirement

q2215r 2,l,q215r 2,

providing a restriction on the denominator. This is t
‘‘smile’’ between the lower two parabolas in Fig. 5, draw
for r 5 1

10 . The numeratorND vanishes along the other tw
curves shown in the figure. One resembles a parabola
4-14
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l5q2112r 2, while the other is a small ‘‘bubble’’ entirely
contained within the smile. Thus whatever complicat
boundary we get forY50, we need only look at that portio
within the bubble given byD50.

We turn now to the coefficientY. Figure 6 shows the

FIG. 5. The curves in theq-l plane across whichD for the bcc
state changes sign whenr 5

1
10. The denominator ofD vanishes

along the solid parabolas and the numerator vanishes along
dashed curves. The undistorted (q50) bcc state is stable betwee
the two lowest parabolas, andD.0 in the ‘‘bubble’’ containing the
origin.
a
t

io

is
ll

se
-
d

th

03621
d
locus of points in theq-l plane for whichY vanishes for the
particular direction cosinesX5Y50 andZ51 along with
the parabolas of marginal stability and the bubbleND50
from Fig. 5. This locus divides the smile into regions disti
guished by the sign ofY. In fact,

he

FIG. 6. The neutral stability curve for the bcc state together w

the zeros ofY andD when r 5
1

10 for the case wherekW8 is parallel
to the z axis, so thatZ51 and the zeros ofY lie on the curve
f z5150 andgz5150. The solid and dashed curves are as in Fig
f z5150 along the short dashed curve andgz5150 along the dot-
dashed curve. The stability region is reduced to the eye-sha
region inside the bubble.
Y~X5Y50!5
~l13q225r 2!2~l224lq213q413lr 2139q2r 22180r 4!

32~l2q2212r 2!~l2q225r 2!2~l2q2115r 2!
.

-

y

ints

nt
m.

eting
Although Y(X5Y50) does not change sign across the p
rabola l13q225r 250 it turns out that the coefficien
J(X5Y50) does. Thusl13q225r 250 is a stability
boundary, forming the top boundary of the eye-shaped reg
in Fig. 6 containing the origin. This region is defined by

f Z515l13q225r 2,0,

gZ515l224lq213q413lr 2139q2r 22180r 4,0

with g50 forming the bottom boundary. The resulting eye
entirely contained within theD bubble, and remains so for a
values ofr. To show this we first show that theD bubble
ND50 intersects the parabolaf Z5150 at only two points
other thanq50. LikewisegZ515ND50 has only two non-
trivial solutions. Moreover, for eachr there are two points in
the q-l plane at which all three polynomials vanish. The
results are conveniently proved using Gro¨bner bases; for de
tails see Ref.@19#. Thus the eye is always entirely containe
within the bubble with the corners of the eye exactly on
bubble, as shown in Fig. 6.
-

n

e

There are two other important cases:X50, Y5Z
51/A2, andX5Y5Z51/A3. The former gives top and bot
tom boundaries

f X50,Y5Z5 f Z5150,

gX50,Y5Z55l3217l2q2119lq427q6210l2r 2

1232lq2r 22222q4r 22975lr 421155q2r 4

14500r 650,

while the latter has the boundaries

f X5Y5Z5l21lq222q4217lr 2212q2r 2160r 450,

gX5Y5Z5l222lq21q4110lr 2130q2r 2275r 450.

The boundaryf X5Y5Z50 always lies above the boundar
f Z5150 and can be ignored. The three bubblesg50 for
these three sets of direction cosines meet at the po

(q2,l)5( 21
10 ,2 69

10 )r 2; apart from these points and the poi
q50 there are no intersections between any two of the
Since these three bubbles cross transversely at their me
4-15
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point ~their gradients point in different directions! the curve
gX50,Y5Z50 can never form a part of the stability bounda
Thus the boundary of the eye is formed bygZ5150 and
gX5Y5Z50 ~see Fig. 7!.

It remains to show that none of the other values ofX and
Y lie on the stability boundary. To construct the envelope
all such boundaries as (X,Y) ranges over the unit diskD2 we
note that a point (q,l) lies on this envelope when

~1! ;~X,Y!PD2:NY~l,q,r ,X,Y!>0

and

~2! '~X,Y!PD2:NY~l,q,r ,X,Y!50,

i.e., (q,l) on the envelope implies

min
~X,Y!PD2

NY~l,q,r ,X,Y!50.

Because of the permutation symmetry amongX, Y, and Z,
points on the boundary ofD2 are equivalent to points in th
interior of the disk. Thus we wish to look for points (q,l)
such that there exist (X,Y)P int D2 with the property

NY5
]NY

]X
5

]NY

]Y
50.

We find that

]NY

]X
52X~122X22Y2!F~l,q,r !G~l,q,r ,Y!

with

FIG. 7. The final region in theq-l plane~the Busse balloon! in
which the bcc solution is stable to long-wavelength perturbation
arbitrary orientation, again forr 5

1
10. The region contains the ori

gin and is bounded by the curvesf z5150 ~solid!, gz5150 ~short
dashed!, and gX5Y5Z50 ~dot-dot-dashed!. Also shown are the
curves wheref X5Y5Z50 ~dashed! andgX50,Y5Z50 ~dot-dashed!.
03621
.

f

F~l,q!5l214lq225q4217lr 2269q2r 2160r 4,

G~l,q,r ,Y!53l4210l3q2228l2q4174lq6239q8

221l3r 21277l2q2r 21261lq4r 22517q6r 2

2555l2r 422860lq2r 41655q4r 415625lr 6

18625q2r 6213 500r 825l4Y212l3q2Y2

196l2q4Y22178lq6Y2185q8Y2

135l3r 2Y22319l2q2r 2Y221339lq4r 2Y2

11623q6r 2Y21925l2r 4Y217800lq2r 4Y2

13315q4r 4Y229375lr 6Y2231 275q2r 6Y2

122 500r 8Y2.

The expression for]NY /]Y is identical but withX, Y inter-
changed. We have already looked at the case where tw
(X,Y,Z) vanish and at the caseX5Y5Z. We now assume
that neither of these is the case. If one of (X,Y,Z) vanishes
we use our permutation symmetry and choose it to beZ. If
two of (X,Y,Z) are equal, we chooseZ to be the different
one. Thus we can assume without loss of generality t
X,YÞ0,Z. Now XÞZ implies 122X22Y2Þ0 and simi-
larly for 12X222Y2. Furthermore,F(l,q)5NY50 is

solved by the points (q2,l)5( 21
10 ,2 69

10 )r 2 already identified,
independently of the direction cosines. This is not surprisi
as at this pointY vanishes for all (X,Y). If X2ÞY2 andqr
Þ0, the remaining factorsG(l,q,r ,Y), G(l,q,r ,X) vanish
together withY at q252l55r 2/2, i.e., another pair of iso-
lated points on a boundary we already have, namely,f Z51
50. We therefore assume thatX5Y, obtaining the two pos-
sibilities

ggeneral,1[l323l2q225lq417q622l2r 2180lq2r 2

126q4r 22195lr 42465q2r 41900r 650,

ggeneral,2[l324l2q215lq422q622l2r 2152lq2r 2

250q4r 22195lr 42300q2r 41900r 650.

The bubbleggeneral,150 intersectsf Z5150 andgX5Y5Z50
at the same point. The additional requirement that the ex
mum lies in the unit disk, so thatX2< 1

2 , is only satisfied for
that portion of the bubble above its intersection withgX5Y
50. Thus the physically meaningful portion of the bounda
ggeneral,150 does not intersect the region of stability we ha
already found. A similar result holds forggeneral,2. These re-
sults are again conveniently proved using Gro¨bner bases.

In summary, the bcc state is stable with respect to lo
wavelength perturbations in the small region of theq-l
plane defined by

f

4-16
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f Z51,0, gZ51,0, gX5Y5Z,0,

shown in Fig. 7. At the boundaryf Z5150 there are two null
eigenvectors~1,0,0! and ~0,1,0!. Thus we have a zigzag in
stability with the wave vector along a coordinate axis but
polarization preference. AtgZ5150 there is the single nul
eigenvector~0,0,1!, so this is an Eckhaus instability along
coordinate axis. AtgX5Y5Z50 the null eigenvector is
~1,1,1!, so there is an Eckhaus instability along the bo
diagonal of the cube.

C. The solution bccI

We now examine the bccI solutionz15¯5z65 ir in the
same regime~5.2! as the bcc solution in the previous sectio
The distorted equilibrium is given by

l1~a11a31a82a16!r
25 1

4 d~ k̃221!21O~q3,r 3!

and its perturbation, defined by
nd

en

an
e

03621
o

y

.

zj5 ieiqW j •xW~r 1a je
ikW8•xW1b̄ je

2 ikW8•xW !,

evolves according to

ȧ15 ir z~2a21a31a52b6!1a1r 2~a11b1!

1 1
2 a3r 2~a21b21a31b31a51b51a61b6!

1a8r 2~a41b4!2 1
2 a16r

2

3~a21a41a51a31b41b622a1!

2da1@~ k̃221!~kW̃•kW8!1~kW̃•kW8!21 1
2 ~ k̃221!k82#.

The equation forḃ1 is obtained by interchanginga i andb i
and changing the sign ofz, etc. As in the bcc case we assum
that the coefficients are in the ratio~5.2! with a1521. The
lowest order matrixH0 is now complex, but is still Hermit-
ian, and so still has only real eigenvalues,
osi-
s

Since the last eigenvalue is positive whenr is small, the
undistorted (q50) bccI solution is unstable at the onset a
only acquires stability at finite amplitude.

The first six eigenvalues belong to the orthogonal eig
vectors

~f1 , . . . ,f6!5

¨

1 1 0 21 21 1

21 21 0 21 21 1

0 1 1 0 2 1

0 21 21 0 2 1

1 0 1 1 21 1

21 0 21 1 21 1

1 21 0 21 21 1

21 1 0 21 21 1

0 1 21 0 2 1

0 21 1 0 2 1

21 0 1 1 21 1

1 0 21 1 21 1

©
.

The first three of these are PM modes corresponding to tr
lations in thex, y, andz directions, while the last three ar
-

s-

AM modes. The remaining six eigenvectors are superp
tions of AM and PM modes. Using the orthogonal vector

~c7 , . . . ,c12!5

¨

0 0 26 0 2 1

0 0 22 2 0 23

1 21 1 21 0 23

3 0 3 0 2 1

3 0 1 2 21 1

1 21 25 21 21 1

22 21 4 21 21 1

2 1 4 21 21 1

23 0 1 2 21 1

21 1 25 21 21 1

23 0 3 0 2 1

21 1 1 21 0 23

©
,

we normalize the basis (f1 , . . . ,f6 ,c7 , . . . ,c12) and
block diagonalizeH0 in this basis to get
4-17
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~H0!new basis

51
0

0

0

214r 2

22r 2

22r 2

A

A

Ā

2 ,

where

A5
r

3 S 220r 22A2~r 13i z!

22A2~r 23i z! 222r
D .

Thus the last six orthonormal eigenvectors are

uf7&5muc7&1nuc8&,
03621
uf8&5 n̄uc7&2m̄uc8&,

uf9&5muc9&1nuc10&,

uf10&5 n̄uc9&2m̄uc10&,

uf11&5m̄uc11&1 n̄uc12&,

uf12&5nuc11&2muc12&,

where

m5
2r 13Ar 218z2

A18r 21144z226r ~r 218z2!1/2
,

n5
2A2~r 23i z!

A18r 21144z226r ~r 218z2!1/2
.

Modes uf7&, uf9&, and uf11& have the eigenvalue
27r 22rAr 218z2, while modes uf8&, uf10&, and uf12&
have the eigenvalue27r 21rAr 218z2.

We can now construct the second order perturbation
trix. With A5(X1Y)/A2, etc. the properly normalized re
sult is
V i j 1^f i uH2uf j&5d2k82~ k̃221!2H 1

42r 2 S X2 XY XZ

XY Y2 YZ

XZ YZ Z2
D 1

1

24r 2 S 2X2 2XY 2XZ

2XY 2Y2 2YZ

2XZ 2YZ 2Z2
D

1
1

4~6r 22z2! S Y21Z2 XY XZ

XY X21Z2 YZ

XZ YZ X21Y2
D J

2
d

4
k82S 2X21Y21Z2 2XY 2XZ

2XY X212Y21Z2 2YZ

2XZ 2YZ X21Y212Z2
D .
As before, the eigenvalues aredk82 times the solutions int to

t31Dt21Jt1Y50,

where

D5
ND

~l2dq2!~6l26dq227z2!
,

J5
NJ

16~l2dq2!2~6l26dq227z2!2
,

Y5
NY

64~l2dq2!3~6l26dq227z2!3
,

and

ND56l2244ldq2138d2q427lz2128dq2z2,
4-18
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where we have chosen to eliminater instead ofz. Once again
the expressions forNJ andNY are too long to list@19#.

We setd51 and examine the roots of this equation subj
to the requirement that the bccI state is stable with respe
perturbations on the lattice, i.e., that the nontrivial eigenv
uesei be negative. This occurs in the region

l.q21 7
6 z2.

This is the region above the upper parabola in Fig. 8, dra
for z5 1

10 . The coefficientD is positive above this curve an
negative below it, i.e., the region of long-wavelength stab
ity must be entirely above the upper parabola in Fig. 8.
next examine the coefficientY. For the particular direction
cosinesX5Y50 andZ51,

Y~X5Y50!5
~l27q2!~6l234q227z2!2

32~l2q2!~6l26q227z2!2
,

which vanishes when

f Z51[l27q250,

gZ51[6l234q227z250.

As in the bcc case,J(X5Y50) changes sign acrossgZ51
50, i.e., gZ5150 is a stability boundary. Moreover, thes
two curves always intersect on the curveND50, so that the
region of stability must be contained within the region d
fined by f Z51.0 andgZ51.0. The other two special direc
tions areX50, Y5Z51/A2, andX5Y5Z51/A3. In the
former caseY vanishes forgZ5150 and

FIG. 8. The equivalent of Fig. 5 for the bccI solution. There a
two parabolic neutral stability curves~solid! and a locus of points
for which D50 ~dashed!. For this and the following figure we hav
chosenz5

1
10.
03621
t
to
l-

n
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e
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f X50,Y5Z[l215q250,

gX50,Y5Z[30l22176lq21146q4235lz21105q2z250,

while in the latter caseY vanishes for

f X5Y5Z[6l2232lq2126q427lz2114q2z250,

gX5Y5Z[6l2268lq2162q427lz2156q2z250.

In the latter caseY contains a factorgX5Y5Z
2 , butJ changes

sign across this curve indicating thatgX5Y5Z50 is a stabil-
ity boundary. The same techniques used for the bcc solut
can now be used to determine the stability boundary for
bccI solution. We find that the curvesf X50,Y5Z50, gZ51

50, andgX5Y5Z50 meet at the points (q2,l)5( 1
8 , 15

8 )z2,
while the curvesf Z5150, f X5Y5Z50, and gX50,Y5Z50

meet at (q2,l)5( 35
96 , 245

96 )z2. The region of stability is there-
fore delineated by the boundariesgZ5150 and f X50,Y5Z
50 as shown in Fig. 9. This stability picture is unchang
when general orientations ofkW8 are included. The same
analysis as for the bcc pattern leads to a pair of functi
F(l,q,z) and G(l,q,z,X) whose explicit forms we omit.
The possibilityF(l,q,z)50 leads to the intersection point
already found, while the possibilitiesG(l,q,z,X)
5G(l,q,z,Y)50 andX2ÞY2 lead to the first of the above
intersection points. Finally, the possibilityG(l,q,z,X)
5G(l,q,z,Y)50 andX5Y leads to another set of bound
aries, which, just as for the bcc solution, do not enter
stability region already identified.

FIG. 9. The region of stability in theq-l plane for which the
bccI solution is stable to long-wavelength perturbations. This is
upper central region lying above the curvesf X50,Y5Z50, gZ51

50. The solid and dashed curves are as in Fig. 8. The cu
f Z5150, f X50,Y5Z50, and f X5Y5Z50 are drawn short dashed
dot-dashed, and dot-dot-dashed, respectively. The curves forgZ51

50, etc. are drawn the same way except in bold.
4-19
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The net result is that the stability of the bccI state is d
limited by two boundaries in theq-l plane. The lower
boundary is given bygZ5150 and holds forq2,z2/8 or l
,15z2/8. Along this boundary, the null eigenvectors
V i j 1^f i uH2uf j& are ~1,0,0! and ~0,1,0! corresponding to a
zigzag instability along this boundary with wave vect
along a coordinate axis and no polarization preference.
upper boundary isf X50,Y5Z50, and holds forq2.z2/8 or
l.15z2/8 ~see Fig. 9!. Along this boundary, the null eigen
vector is ~0,1,21!. This is another zigzag instability, thi
03621
-

e

time with wave vector along a diagonal in a coordinate pla
and polarization in the same coordinate plane.

C. The hex prisms

The hex prisms take the formr 15r 25r 350 andr 45r 5
5r 65r . The stability matrixH0 has non-normalized but or
thogonal eigenvectors
F5

¨

0 0 0 0 0 0 0 21 0 21 0 1

0 0 0 0 0 0 21 0 21 0 1 0

0 0 0 0 0 0 0 0 0 2 0 1

0 0 0 0 0 0 0 0 2 0 1 0

0 0 0 0 0 0 0 1 0 21 0 1

0 0 0 0 0 0 1 0 21 0 1 0

1 1 1 1 1 1 0 0 0 0 0 0

21 21 21 1 1 1 0 0 0 0 0 0

0 22 1 0 22 1 0 0 0 0 0 0

0 2 21 0 22 1 0 0 0 0 0 0

21 1 1 21 1 1 0 0 0 0 0 0

1 21 21 21 1 1 0 0 0 0 0 0

©
,

with eigenvalues

respectively. The null eigenvectoruf1& represents a shift of the maxima in the direction (2x̂2 ŷ2 ẑ)/A6, while uf2& represents
a shift in the direction (ẑ2 ŷ)/A2. Consequently the distorted equilibrium

l1zr 1~a11 1
2 a3!r 25 1

4 d~ k̃4
221!21O~q3,r 3! ~5.4!

can have at most two unstable modes.
The properly normalized first order perturbation theory forH2 yields

^f i uH2uf j&u i , j 51,252 1
2 dk82S D21F2 D22F2

A3

D22F2

A3

D214E21F2

3

D .

For second order perturbation theory forH1 we first calculate the properly normalized
4-20



^f l uH1uf i&u i 51,2
l 53, . . . ,12

52 1
2 dk8~ k̃221!

l
↓

i→

¨

0 0

D1F
D2F

A3

D2F

A3

D14E1F

3

A2

3
~D2F !

A2~D22E1F !

3

0 0

0 0

0 0

0 0

©
.
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0 0

0 0

The second order matrix is therefore

V i j 52
d2k82~ k̃221!2

~2a12 1
2 a3!r 222zr S D21DF1F2

3

~D2F !~D1E1F !

3A3

~D2F !~D1E1F !

3A3

D212DE14E22DF12EF1F2

9

D
2

d2k82~ k̃221!2

~2a11a3!r 21zr S ~D2F !2

6

~D2F !~D22E1F !

6A3

~D2F !~D22E1F !

6A3

~D22E1F !2

18

D .
tio
h

hex
.

e
oint

le
As before, we writek̃5A112q and A5(X1Y)/A2, etc.,
and use the equilibrium condition~5.4! in the form

z5
dq22l2~a11 1

2 a3!r 2

r

to obtain an equation for the eigenvalues of the perturba
matrix V i j 1^f i uH2uf j& describing the long-wavelengt
properties of distorted hex prisms. These aredk82 times the
solutions int to thequadratic

t21Dt1J50.

We evaluate the coefficients at (a1 ,a3 ,a8 ,a16)'
2(1,8,2,4), obtaining

D5
2~X22XY1Y22XZ2YZ1Z2!ND

3~l2dq224r 2!~l2dq215r 2!
,

03621
n

J5
~l1dq224r 2!~X22XY1Y22XZ2YZ1Z2!2NJ

12~l2dq224r 2!2~l2dq215r 2!

and

ND5l223ldq212d2q41lr 2112dq2r 2220r 4

and

NJ5l224ldq213d2q41lr 2113dq2r 2220r 4.

The denominators vanish along two parabolas and the
prisms are stable only within the ‘‘smile’’ between them
Moreover,D.0 inside the bubble given byND50, while J
is positive below the parabola

f J5l1dq224r 250

and inside the curveNJ50. Just as for the bcc solution, w
can show that these three curves always meet at the p

(q2,l)5( 3
2 , 5

2 )r 2, and that the hex prisms can only be stab
4-21
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for f J,0 andNJ,0. This is the region depicted in Fig. 10
Along the boundaryf J50, the null eigenvector is2A3(Z
2Y)uf1&1(2X2Y2Z)uf2&. Since uf1& is a shift by an
amount (2x̂2 ŷ2 ẑ)/A6, while uf2& is a shift by an amoun
( ẑ2 ŷ)/A2, we recognize this as a zigzag instability with n
preferred direction forkW8. At the boundaryNJ50, the null
eigenvector is (2X2Y2Z)uf1&1A3(Z2Y)uf2&, indicating
a skew-varicose instability.

In the special caseX5Y5Z51/A3 bothD andJ vanish.
In this case we must go to higher order ink8. For this direc-
tion of kW8, both ^f i uH2uf j& and ^f l uH1uf i& vanish identi-
cally. The only term at the relevant order is

^f i uH3uf j&52
d

2
~ k̃221!k82152dqk821.

Thus if q,0 the system is unstable to bothuf1& and uf2&,
and this is a zigzag instability, withkW8 pointed along the axis
of the hexagonal prisms and no preference for polarizati

Once again, the long-wavelength stability properties
the lamellas are the same as those on the sc lattice. M
over, with (a1 ,a3 ,a8 ,a16)'2(1,8,2,4) the remaining pri-
mary branch, square prisms, is unstable even whenq50.
Consequently, we do not consider this state further.

VI. TURING INSTABILITY

In the foregoing discussion we have taken an entir
model-independent approach so that the results are a
cable to any three-dimensional pattern-forming system
this section we indicate briefly the application of the prec
ing results to two two-species reaction-diffusion syste
commonly used as models for the Turing instability. The fi
of these is the Brusselator model@20#,

Ẋ52~B11!X1X2Y1A1DX¹2X,
~6.1!

Ẏ5BX2X2Y1DY¹2Y.

HereX andY are the chemical concentrations of an activa
and an inhibitor, respectively,DX andDY are their diffusivi-
ties (DX,DY), and A and B are parameters that are he
fixed. Traditionally,B is chosen as the bifurcation paramet
As B increases through a critical valueBT three-dimensiona
structures may form. Indeed such structures were foun
numerical simulations of the model@21,22#.

Although the Brusselator has been much studied a
model system exhibiting a Turing instability, it is not a mod
for any specific chemical systemper se. In contrast the sec
ond system, the Lengyel-Epstein model@23#, models the
chlorite-iodide-malonic acid reaction in which the Turing i
stability was first experimentally established@2#. More pre-
cisely, the Lengyel-Epstein~LE! model describes the closel
related chlorine-dioxide-iodine-malonic acid reaction, whi
also exhibits the Turing instability. Like the Brusselator t
Lengyel-Epstein model is a two-species model with o
equation for an activator (I2) and another for an inhibito
(ClO2

2). In dimensionless variables the model takes the fo
03621
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Ẋ5a2X2
4XY

11X2
1¹2X,

~6.2!

Ẏ5dLEFbS X2
XY

11X2D 1c¹2YG ,

where X and Y again represent the activator and inhibit
concentrations,c is the ratio of their diffusivities, anda and
b are fixed parameters. In aqueous solutionc is generally
close to 1 and consequently the conditions for the Tur
instability are not satisfied. However, with starch present
iodide mobility is dramatically reduced~because of the bind
ing of I2 to the starch! and the effective diffusivity ratio
becomes larger by the factordLE.1. Thus the starch plays
vital though passive role in the appearance of the instab
@24#. Both models require four parameters for their compl
specification. We think of two of these,A andB ~resp.,a, b!,
as representing concentrations of input chemicals, while
remaining two specify the diffusion rates of the activator a
inhibitor. Moreover, in each model, the nonlinear term in t
activator equation is of the same form as that in the inhib
equation. This result of the law of mass action has import
consequences for the properties of these models.

The nonlinear coefficients for these two models on the
fcc, and bcc lattices are calculated elsewhere@18# on the
assumption that the wave number of the pattern is the Tu
wave numberkT identified below. On the bcc lattice the co
efficients are restricted by the relation~5.2! in order that
stable patterns exist at small amplitude, i.e., in the range
validity of the amplitude equations. In the absence of deg
eracies among these coefficients the nonlinear terms are
affected by small departures of the wave number fromkT ,
i.e., by small distortions of the pattern. It remains therefo
to calculate the neutral curve for the Turing instability as

FIG. 10. The region in theq-l plane for which the hexagona
prism solution is stable to long-wavelength perturbations forr
5

1
10. This is the right half of the innermost region, bounded by t

curvesf J50 ~short dashed!, NJ50 ~dot-dashed!, andq50. Also
shown are the parabolas~solid! along which the denominator ofD
vanishes and the curve~dashed! along which the numerator ofD
vanishes.
4-22
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function of k2kT and thereby identify the remaining coeffi
cient d @see Eq.~3.1!# in the theory.

The Brusselator model has a uniform equilibrium
(X,Y)5(A,B/A). Perturbations of this state with spatial d

pendenceeikW̃•xW, wherekW̃[kWT1qW , are marginally stable when
the determinant of the stability matrix

S 2DXk̃21B21 A2

2B 2DYk̃22A2D
vanishes, yielding the neutral stability curve

B5DXk̃21S 11A2
DX

DY
D 1

A2

DYk̃2
.

The Turing instability therefore sets in at the minimum
this curve, which is at

B5BT[@11AADX /DY#2, k25kT
2[

A

ADXDY

.

We rescale the spatial coordinates so thatkT51 ~henceDY
5A2/DX) and henceforth write the critical wave vectors
k̂. The procedure of Sec. II applied toB2BT now yields an
equation of the form~2.1! with

l55
A2

~A22R2!~R11!
~B2BT! for the Brusselator

2
25adLE

~cdLE21!R~251a2!3/2
~b2bT!

for the LE model,

d55
4A2

~A22R2!~R11!
for the Brusselator

5cdLE

A10a~cdLE21!R
for the LE model.

For pattern formation from a stable uniform state we m
have d .0. In these expressionsR5AADX /DY, and 25
1A40a2/(251a2), respectively. Calculations of the coeffi
cient of the quadratic equivariant on the bcc lattice sho
that this coefficient vanishes whenR51 ~Brusselator! and
A2124 ~Lengyel-Epstein! @18#.

VII. DISCUSSION

In this paper we have examined the stability of vario
steady three-dimensional patterns with cubic symmetry w
respect to long-wavelength perturbations. The study was
tivated by the Turing instability in three dimensions and
cused on instabilities that restrict the wave number of
pattern. The analysis relies heavily on an existing analysi
three-dimensional patterns on the simple, face-centered-
body-centered-cubic lattices@7# and the application of this
theory to reaction-diffusion systems that are used to mo
03621
t

t

s

s
h
o-
-
e
of
nd

el

the Turing instability@18#. To perform it we considered ‘‘iso-
tropic’’ distortions of the patterns, i.e., distortions that chan
the length of all the wave vectors by thesameamount. An-
isotropic distortions such as those leading to rhombs in
dimensions@17# were not considered. The analysis identifi
various skew-varicose, zigzag, and Eckhaus instabilities
set in when the distortion becomes too large. We expect
the resulting instabilities will alter the wave number of th
pattern in such a way that the local wave number everywh
falls in the stable region we identify. By analogy with th
processes that accomplish this task in two dimensions
anticipate the existence of various gliding and climbing d
locations@1# by which the three-dimensional patterns adju
their wavelength. We have not, however, studied these p
cesses in detail. In fact it is a relatively simple matter,
though beyond the scope of the present paper, to de
phase equations describing the relaxation of the spatial p
of the pattern, cf. Refs.@25# and@11#. For three-dimensiona
patterns this process will be described by three phase e
tions coupled via nonlinear terms. Undoubtedly such eq
tions describe a wealth of complex dynamics.

We found that patterns stable at the band center~i.e., with
q50) remain stable with respect to long-wavelength pert
bations in some region of theq-l parameter plane. Hereq
specifies the change in the wave number away fromkT while
the bifurcation parameterl indicates the amplitude of the
pattern. The resulting region of stability, referred to as
Busse balloon by analogy with the analogous problem in t
dimensions, may be either open or closed at the ‘‘top,’’ i.
at largel. The latter is the case for the bcc and hexago
prism solutions. Both these branches arise in a transcrit
primary bifurcation, and gain and lose stability through se
ondary bifurcations@7#: for the coefficients calculated from
the two-species reaction-diffusion equations, the bcc so
tions gain stability at a saddle-node bifurcation and lose it
shedding a branch called 1238 while the hexagonal prism
branch gains stability by shedding 1238 and loses it by shed
ding a branch of rhombic prisms. Consequently the Bu
balloon must be closed at the band center, i.e., atq50. Al-
though there is, in principle, no reason why the stability
gion should be closed for other values ofq we find that this
is in fact so. It should be noted, however, that with suf
ciently large but evenO(h3,z3) terms included in Eq.~5.1!,
the stability regions may become open@26#. Moreover, on
the hexagonal lattice in two dimensions with the midpla
symmetryz→2z it is possible for hexagonsH6 to be stable
at largel @27#; stable solutions of this type were recent
computed for the Be´nard problem@28# and exist forq suffi-
ciently different from 0. In this case the Busse balloon f
H6 remains open, and by continuity we expect this to be
for a12!1 as well. We remark that standingwavesin the
parametrically forced Hopf bifurcation also have a clos
Busse balloon@29#. This example is interesting because t
standing waves do not lose stability with increasingl in the
absence of sideband perturbations. In cases in which the
bility region for a solution is open, other techniques must
employed to find~finite wavelength! instabilities ~e.g., the
cross-roll instability! that might close it. These calculation
are also beyond the scope of this paper.
4-23
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A major accomplishment of the present paper has b
the demonstration that symmetry-based techniques ca
used to solve efficiently modulational instability problems
a substantial degree of complexity. The necessary calc
tions for the different solutions and lattices show a striki
similarity. In particular, the perturbation matricesH1 , H2 ,
andH3 are the same for every solution on a lattice and
almost the same among different lattices. The only sign
cant difference among the solutions lies in the lowest or
matrix H0 . It is therefore hardly surprising that the resu
for the lamellas are exactly the same on each lattice. Ph
cally, this must be the case. Consider the lamellas on th
lattice. There is only one kind of phase shift that can ta
place, namely, shifts in the directionk̂1 . Because of transla
tion invariance of the lamellas, shifts perpendicular tok̂1 are
identity operations and hence are not associated with a

eigenvalue. Since the modulation wave vectorkW8 is permit-
ted to point in any direction, the sc calculation already ide
tifies the most general phase modulation; consequently
result using a larger lattice must necessarily be the same
fact the structure ofH0 indicates that thea1 andb1 modes
completely decouple from the other modes so that the p
ence of other lattice wave vectors is irrelevant. There is o
one exception: the possibility in two or more dimensions t
kW8' k̂1 , i.e., A50 leads to the zigzag boundary atq50.
However, the directions of the other lattice vectors make
difference and we would get the same answer for any o
lattice, including the higher-dimensional representations
the cubic lattices@30#.

We also note the similarity of the zigzag boundaryq50
for both the lamellas and the hexagonal prisms. In fact,
though the result for the lamellas is the same as that for r
on two-dimensional lattices, the zigzag boundary for the h
agonal prisms is not found when calculating the stability
hexagons on two-dimensional lattices. This leads to the
lowing.

Claim. If the symmetry group( of a nontrivial solutionz
contains a continuous translation subgroup, then the solu
is unstable to a zigzag instability forq,0.

Let G be the~representation of the! symmetry group of the
system of amplitude equations. As explained in Sec. III,
the limit k8→0, three of the PM eigenvectors ofH0 corre-
spond to translations in three independent directions.
eigenvalues ofH0 are exactly the lattice stability eigenva
ues, and we know from Ref.@31# that H0 must have a null
eigenvector for each continuous symmetry ofG that isnot in
(. A continuous translation symmetry thatis in ( corre-
sponds to a PM mode that is not generally a null eigenve
of H0 . BecauseH0 is Hermitian this PM mode is orthogona
to the null eigenspace ofH0 . If we choosekW8 to point in the
direction of this continuous translation, then the directi
cosines in the orthogonal directions vanish, and the (k̂i•kW8)
terms inH1 andH2 vanish identicallyon the null eigenspace
of H0 . Thus the lowest order perturbation isH3 , which al-
ways gives instability forq,0. Because we have chosenkW8
perpendicular to the direction of the shifts for the null eige
vectors, this is always a zigzag instability.
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We therefore conclude that allm-dimensional patterns in
n-dimensional space (m,n) must be unstable to the zigza
instability if the pattern is dilated (q,0) from its natural
wavelength—its wavelength exactly at onset. In particu
some higher-dimensional representations of the cubic lat
contain higher-dimensional representations of the square
tice, and therefore support prisms based on the patt
found in Ref. @32#. According to the above theorem suc
prism patterns must also be unstable to the zigzag instab
for q,0.

It is unclear why the same phenomenon should occur
the sc pattern. There is no continuous symmetry, yet there

directions ofkW8 for which H1 andH2 vanish identically on
some portion of the null eigenspace. The termsD, J, andY
factor into the product of a term independent ofl andq and
a term independent of the direction cosines. This may be
to the high degree of symmetry (^f i uH2uf j& is diagonal, for
instance! and the fact that every term in the sc equation
ż1 is proportional toz1 , a consequence of the absence
spatial resonances among thek̂ j . This independence of the
fundamental wave vectors manifests itself in the structure
the representation of the symmetry groupG. For example,
the G for the sc lattice can be written as awreath product
group @33,34# but this is not so for the fcc lattice. To write
the sc symmetry group as a wreath product we consider
system (z1 ,z2 ,z3) to be the union of three separate su
systems, one for eachzj , and let O(2) be the set of rotation
~translations! and reflections acting on each amplitude by

ta :zj→eiazj , r:zj→ z̄j .

These operations define a local symmetry group, which a
on each individual subsystem. Since these subsystems ca
permuted among themselves, an additional~global! symme-
try group is present. This is the permutation groupS3 . The
wreath product group O(2)oS3 is constructed from these tw
groups by permitting the local group to act independently
each of the subsystems, much as a local gauge symmet
field theory. For the sc lattice, the group that results is
groupG. Evidently this construction requires that the tran
lations for each of the three amplitudeszj be independent.
This is not so on the fcc lattice, for which the fact th
( j 51

4 k̂ j50W implies that the actions of the translations on t
four amplitudes are not independent, and hence that the s
metry group is not O(2)oS4 .

It appears that it is the presence of such spatial resona
on the fcc and bcc lattices that preventsH1 and H2 from
simultaneously vanishing on the null eigenspace ofH0 , no
matter what the direction ofkW8. This suggests the following

Conjecture. Let G be a nontrivial discrete group and le
G5O~2!oG, i.e., the wreath product of O~2! andG. Choose a
system equivariant under this representation, and letz be the
solution with all amplitudes equal and nonzero.~A solution
of this form is guaranteed by Ref.@34#!. Then z suffers a
zigzag instability forq,0 with kW8 along a coordinate axis.
4-24
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Because the isotropy subgroup of this solution@namely,
((z)5G] is the only axial isotropy subgroup without a co
tinuous symmetry~see Ref.@34#!, this conjecture claims tha
all axial solutions on O(2)o G have such a zigzag instability
This conjecture applies to the six-dimensional representa
of the sc lattice sinceT31̇O% Z2'O(2)oS3 . HereO is the
octahedral group andS3 the permutation group on three el
ments. We know of one other instance of this prope
hy

s

n

-

v.

03621
n

,

namely, squares on the square lattice, with symme
O(2)o Z2 . These do indeed undergo exactly this instabil
@10#.
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